"Geschlossenes Universum mit ΩR>1"
sol=Quiet[FullSimplify[DSolve[{
a'[t]/a[t]==H0 Sqrt[ΩR/a[t]^4+(1-ΩR)/a[t]^2],
a[0]==a0}, a[t], t], ΩR>1&&t>0]]
"Skalenfaktor"
a[t_]:=Sqrt[a0^2+H0 t (2 Sqrt[a0^2+ΩR-a0^2 ΩR]+H0 (t-t ΩR))]
"Beispiel"
ΩR=11/10; H0=1; a0=1/1000;
tMax=FindMaximum[a[t], {t, 1}, WorkingPrecision->32][[2, 1, 2]];
T:=If[t<tMax, t, 2tMax-t]
h[t_]:=a'[t]/a[t]; H[t_]:=If[t<tMax, h[t], -h[2tMax-t]]
Plot[a[T], {t, 0, 2tMax}, Frame->True, GridLines->{{tMax}, {}}, AspectRatio->1/2]
Plot[H[t], {t, 0, 2tMax}, Frame->True, GridLines->{{tMax}, {}}, AspectRatio->1/2]