Evolution of the cosmic horizons in a Big Cruch universe (Ωr=2, Ωk=-1)

Proper (r) & comoving (R) distances, Plot range: r|R=0…70, t=0…41.1856

If H=67.15 at a=1, the turning point at a=√2 would be at t=20.5928 Gyr

The Big Bang is at the bottom, the Big Crunch at the top of the t axis

rK=c/H0/√[-Ωk/a²], Max separation: rM=πrK, Loop: 2rM, Volume: V=2π²rK³

Colors: Hubble radius, 1/2 circumference, Particle horizon, Light cone

Gray dashed curves: worldlines of objects comoving with the Hubbleflow

Static | Crunch | Rip | Radiation | Matter | Milne | Hyperbolic | ΛCDM


   r(t)

↑ r(t) / ↓ R(t)

   R(t)

↑ R(t) / ↓ R(η)

   R(η)

[Main]¦[Code]     Index: a, ȧ, ä, ã, â, H, , , rH, rE, rP, rL, Σr, Ω