Evolution of the cosmic horizons in a closed & static universe (ȧ=ä=0)
Proper (r) & comoving (R) distances, Plotrange: r|R|t|η=[0…70]&[0…800]
H0=67.15, Ωr=0.3, Ωm=1.1, ΩΛ=0.00732258785 → a_max=4.3340709 @ t=440.1
When ȧ=ä=0 is met, the universe gets to an unstable static equilibrium
Gray dashed curves: worldlines of objects comoving with the Hubbleflow
+: closed (Ωr=2), matter (Ωr=1), radiation (Ωr=1) & mixed (Ωr+Ωm+ΩΛ=1)
r(t)
↑ r(t) / ↓ R(t)
R(t)
↑ R(t) / ↓ R(η)
R(η)
↑ a=1 / ↓ ȧ=ä=H=Ḣ=0
r(t)
↑ r(t) / ↓ R(t)
R(t)
↑ R(t) / ↓ R(η)
R(η)
«back Index: a, ȧ, ä, ã, â, H, Ḣ, Ḧ, rH, rE, rP, rL, Σr, Ω
|